3.32 \(\int \frac{(e x)^m (A+B x^n)}{(c+d x^n)^2} \, dx\)

Optimal. Leaf size=107 \[ \frac{(e x)^{m+1} (B c (m+1)-A d (m-n+1)) \, _2F_1\left (1,\frac{m+1}{n};\frac{m+n+1}{n};-\frac{d x^n}{c}\right )}{c^2 d e (m+1) n}-\frac{(e x)^{m+1} (B c-A d)}{c d e n \left (c+d x^n\right )} \]

[Out]

-(((B*c - A*d)*(e*x)^(1 + m))/(c*d*e*n*(c + d*x^n))) + ((B*c*(1 + m) - A*d*(1 + m - n))*(e*x)^(1 + m)*Hypergeo
metric2F1[1, (1 + m)/n, (1 + m + n)/n, -((d*x^n)/c)])/(c^2*d*e*(1 + m)*n)

________________________________________________________________________________________

Rubi [A]  time = 0.0555015, antiderivative size = 107, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.091, Rules used = {457, 364} \[ \frac{(e x)^{m+1} (B c (m+1)-A d (m-n+1)) \, _2F_1\left (1,\frac{m+1}{n};\frac{m+n+1}{n};-\frac{d x^n}{c}\right )}{c^2 d e (m+1) n}-\frac{(e x)^{m+1} (B c-A d)}{c d e n \left (c+d x^n\right )} \]

Antiderivative was successfully verified.

[In]

Int[((e*x)^m*(A + B*x^n))/(c + d*x^n)^2,x]

[Out]

-(((B*c - A*d)*(e*x)^(1 + m))/(c*d*e*n*(c + d*x^n))) + ((B*c*(1 + m) - A*d*(1 + m - n))*(e*x)^(1 + m)*Hypergeo
metric2F1[1, (1 + m)/n, (1 + m + n)/n, -((d*x^n)/c)])/(c^2*d*e*(1 + m)*n)

Rule 457

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> -Simp[((b*c - a*d
)*(e*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*b*e*n*(p + 1)), x] - Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(a*b
*n*(p + 1)), Int[(e*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[b*c - a*d, 0] &
& LtQ[p, -1] && (( !IntegerQ[p + 1/2] && NeQ[p, -5/4]) ||  !RationalQ[m] || (IGtQ[n, 0] && ILtQ[p + 1/2, 0] &&
 LeQ[-1, m, -(n*(p + 1))]))

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rubi steps

\begin{align*} \int \frac{(e x)^m \left (A+B x^n\right )}{\left (c+d x^n\right )^2} \, dx &=-\frac{(B c-A d) (e x)^{1+m}}{c d e n \left (c+d x^n\right )}+\frac{(B c (1+m)-A d (1+m-n)) \int \frac{(e x)^m}{c+d x^n} \, dx}{c d n}\\ &=-\frac{(B c-A d) (e x)^{1+m}}{c d e n \left (c+d x^n\right )}+\frac{(B c (1+m)-A d (1+m-n)) (e x)^{1+m} \, _2F_1\left (1,\frac{1+m}{n};\frac{1+m+n}{n};-\frac{d x^n}{c}\right )}{c^2 d e (1+m) n}\\ \end{align*}

Mathematica [A]  time = 0.0707896, size = 83, normalized size = 0.78 \[ \frac{x (e x)^m \left ((A d-B c) \, _2F_1\left (2,\frac{m+1}{n};\frac{m+n+1}{n};-\frac{d x^n}{c}\right )+B c \, _2F_1\left (1,\frac{m+1}{n};\frac{m+n+1}{n};-\frac{d x^n}{c}\right )\right )}{c^2 d (m+1)} \]

Antiderivative was successfully verified.

[In]

Integrate[((e*x)^m*(A + B*x^n))/(c + d*x^n)^2,x]

[Out]

(x*(e*x)^m*(B*c*Hypergeometric2F1[1, (1 + m)/n, (1 + m + n)/n, -((d*x^n)/c)] + (-(B*c) + A*d)*Hypergeometric2F
1[2, (1 + m)/n, (1 + m + n)/n, -((d*x^n)/c)]))/(c^2*d*(1 + m))

________________________________________________________________________________________

Maple [F]  time = 0.358, size = 0, normalized size = 0. \begin{align*} \int{\frac{ \left ( ex \right ) ^{m} \left ( A+B{x}^{n} \right ) }{ \left ( c+d{x}^{n} \right ) ^{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x)^m*(A+B*x^n)/(c+d*x^n)^2,x)

[Out]

int((e*x)^m*(A+B*x^n)/(c+d*x^n)^2,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\frac{{\left (B c e^{m} - A d e^{m}\right )} x x^{m}}{c d^{2} n x^{n} + c^{2} d n} -{\left (A d e^{m}{\left (m - n + 1\right )} - B c e^{m}{\left (m + 1\right )}\right )} \int \frac{x^{m}}{c d^{2} n x^{n} + c^{2} d n}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^m*(A+B*x^n)/(c+d*x^n)^2,x, algorithm="maxima")

[Out]

-(B*c*e^m - A*d*e^m)*x*x^m/(c*d^2*n*x^n + c^2*d*n) - (A*d*e^m*(m - n + 1) - B*c*e^m*(m + 1))*integrate(x^m/(c*
d^2*n*x^n + c^2*d*n), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (B x^{n} + A\right )} \left (e x\right )^{m}}{d^{2} x^{2 \, n} + 2 \, c d x^{n} + c^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^m*(A+B*x^n)/(c+d*x^n)^2,x, algorithm="fricas")

[Out]

integral((B*x^n + A)*(e*x)^m/(d^2*x^(2*n) + 2*c*d*x^n + c^2), x)

________________________________________________________________________________________

Sympy [C]  time = 12.8347, size = 1897, normalized size = 17.73 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)**m*(A+B*x**n)/(c+d*x**n)**2,x)

[Out]

A*(-e**m*m**2*x*x**m*lerchphi(d*x**n*exp_polar(I*pi)/c, 1, m/n + 1/n)*gamma(m/n + 1/n)/(c*(c*n**3*gamma(m/n +
1 + 1/n) + d*n**3*x**n*gamma(m/n + 1 + 1/n))) + e**m*m*n*x*x**m*lerchphi(d*x**n*exp_polar(I*pi)/c, 1, m/n + 1/
n)*gamma(m/n + 1/n)/(c*(c*n**3*gamma(m/n + 1 + 1/n) + d*n**3*x**n*gamma(m/n + 1 + 1/n))) + e**m*m*n*x*x**m*gam
ma(m/n + 1/n)/(c*(c*n**3*gamma(m/n + 1 + 1/n) + d*n**3*x**n*gamma(m/n + 1 + 1/n))) - 2*e**m*m*x*x**m*lerchphi(
d*x**n*exp_polar(I*pi)/c, 1, m/n + 1/n)*gamma(m/n + 1/n)/(c*(c*n**3*gamma(m/n + 1 + 1/n) + d*n**3*x**n*gamma(m
/n + 1 + 1/n))) + e**m*n*x*x**m*lerchphi(d*x**n*exp_polar(I*pi)/c, 1, m/n + 1/n)*gamma(m/n + 1/n)/(c*(c*n**3*g
amma(m/n + 1 + 1/n) + d*n**3*x**n*gamma(m/n + 1 + 1/n))) + e**m*n*x*x**m*gamma(m/n + 1/n)/(c*(c*n**3*gamma(m/n
 + 1 + 1/n) + d*n**3*x**n*gamma(m/n + 1 + 1/n))) - e**m*x*x**m*lerchphi(d*x**n*exp_polar(I*pi)/c, 1, m/n + 1/n
)*gamma(m/n + 1/n)/(c*(c*n**3*gamma(m/n + 1 + 1/n) + d*n**3*x**n*gamma(m/n + 1 + 1/n))) - d*e**m*m**2*x*x**m*x
**n*lerchphi(d*x**n*exp_polar(I*pi)/c, 1, m/n + 1/n)*gamma(m/n + 1/n)/(c**2*(c*n**3*gamma(m/n + 1 + 1/n) + d*n
**3*x**n*gamma(m/n + 1 + 1/n))) + d*e**m*m*n*x*x**m*x**n*lerchphi(d*x**n*exp_polar(I*pi)/c, 1, m/n + 1/n)*gamm
a(m/n + 1/n)/(c**2*(c*n**3*gamma(m/n + 1 + 1/n) + d*n**3*x**n*gamma(m/n + 1 + 1/n))) - 2*d*e**m*m*x*x**m*x**n*
lerchphi(d*x**n*exp_polar(I*pi)/c, 1, m/n + 1/n)*gamma(m/n + 1/n)/(c**2*(c*n**3*gamma(m/n + 1 + 1/n) + d*n**3*
x**n*gamma(m/n + 1 + 1/n))) + d*e**m*n*x*x**m*x**n*lerchphi(d*x**n*exp_polar(I*pi)/c, 1, m/n + 1/n)*gamma(m/n
+ 1/n)/(c**2*(c*n**3*gamma(m/n + 1 + 1/n) + d*n**3*x**n*gamma(m/n + 1 + 1/n))) - d*e**m*x*x**m*x**n*lerchphi(d
*x**n*exp_polar(I*pi)/c, 1, m/n + 1/n)*gamma(m/n + 1/n)/(c**2*(c*n**3*gamma(m/n + 1 + 1/n) + d*n**3*x**n*gamma
(m/n + 1 + 1/n)))) + B*(-e**m*m**2*x*x**m*x**n*lerchphi(d*x**n*exp_polar(I*pi)/c, 1, m/n + 1 + 1/n)*gamma(m/n
+ 1 + 1/n)/(c*(c*n**3*gamma(m/n + 2 + 1/n) + d*n**3*x**n*gamma(m/n + 2 + 1/n))) - e**m*m*n*x*x**m*x**n*lerchph
i(d*x**n*exp_polar(I*pi)/c, 1, m/n + 1 + 1/n)*gamma(m/n + 1 + 1/n)/(c*(c*n**3*gamma(m/n + 2 + 1/n) + d*n**3*x*
*n*gamma(m/n + 2 + 1/n))) + e**m*m*n*x*x**m*x**n*gamma(m/n + 1 + 1/n)/(c*(c*n**3*gamma(m/n + 2 + 1/n) + d*n**3
*x**n*gamma(m/n + 2 + 1/n))) - 2*e**m*m*x*x**m*x**n*lerchphi(d*x**n*exp_polar(I*pi)/c, 1, m/n + 1 + 1/n)*gamma
(m/n + 1 + 1/n)/(c*(c*n**3*gamma(m/n + 2 + 1/n) + d*n**3*x**n*gamma(m/n + 2 + 1/n))) + e**m*n**2*x*x**m*x**n*g
amma(m/n + 1 + 1/n)/(c*(c*n**3*gamma(m/n + 2 + 1/n) + d*n**3*x**n*gamma(m/n + 2 + 1/n))) - e**m*n*x*x**m*x**n*
lerchphi(d*x**n*exp_polar(I*pi)/c, 1, m/n + 1 + 1/n)*gamma(m/n + 1 + 1/n)/(c*(c*n**3*gamma(m/n + 2 + 1/n) + d*
n**3*x**n*gamma(m/n + 2 + 1/n))) + e**m*n*x*x**m*x**n*gamma(m/n + 1 + 1/n)/(c*(c*n**3*gamma(m/n + 2 + 1/n) + d
*n**3*x**n*gamma(m/n + 2 + 1/n))) - e**m*x*x**m*x**n*lerchphi(d*x**n*exp_polar(I*pi)/c, 1, m/n + 1 + 1/n)*gamm
a(m/n + 1 + 1/n)/(c*(c*n**3*gamma(m/n + 2 + 1/n) + d*n**3*x**n*gamma(m/n + 2 + 1/n))) - d*e**m*m**2*x*x**m*x**
(2*n)*lerchphi(d*x**n*exp_polar(I*pi)/c, 1, m/n + 1 + 1/n)*gamma(m/n + 1 + 1/n)/(c**2*(c*n**3*gamma(m/n + 2 +
1/n) + d*n**3*x**n*gamma(m/n + 2 + 1/n))) - d*e**m*m*n*x*x**m*x**(2*n)*lerchphi(d*x**n*exp_polar(I*pi)/c, 1, m
/n + 1 + 1/n)*gamma(m/n + 1 + 1/n)/(c**2*(c*n**3*gamma(m/n + 2 + 1/n) + d*n**3*x**n*gamma(m/n + 2 + 1/n))) - 2
*d*e**m*m*x*x**m*x**(2*n)*lerchphi(d*x**n*exp_polar(I*pi)/c, 1, m/n + 1 + 1/n)*gamma(m/n + 1 + 1/n)/(c**2*(c*n
**3*gamma(m/n + 2 + 1/n) + d*n**3*x**n*gamma(m/n + 2 + 1/n))) - d*e**m*n*x*x**m*x**(2*n)*lerchphi(d*x**n*exp_p
olar(I*pi)/c, 1, m/n + 1 + 1/n)*gamma(m/n + 1 + 1/n)/(c**2*(c*n**3*gamma(m/n + 2 + 1/n) + d*n**3*x**n*gamma(m/
n + 2 + 1/n))) - d*e**m*x*x**m*x**(2*n)*lerchphi(d*x**n*exp_polar(I*pi)/c, 1, m/n + 1 + 1/n)*gamma(m/n + 1 + 1
/n)/(c**2*(c*n**3*gamma(m/n + 2 + 1/n) + d*n**3*x**n*gamma(m/n + 2 + 1/n))))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B x^{n} + A\right )} \left (e x\right )^{m}}{{\left (d x^{n} + c\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^m*(A+B*x^n)/(c+d*x^n)^2,x, algorithm="giac")

[Out]

integrate((B*x^n + A)*(e*x)^m/(d*x^n + c)^2, x)